二叉搜索树

数据结构中二叉搜索树问题总结归纳。

Unique Binary Search Trees

Description: Given n, how many structurally unique BST’s (binary search trees) that store values 1…n?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/*
For example, Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
*/
/**DP方法
See https://leetcode.com/problems/unique-binary-search-trees/discuss/31666
令G(n)表示长度为n的序列的二叉搜索数的数量,F(i, n)表示在长度为 n 的序列中,以 i 为根结点的
二叉搜索数的数量,则有 G(n) = F(1, n) + F(2, n) + ... + F(n, n),且 G(0) = G(1) = 1
对于F(i, n),有 F(i, n) = G(i - 1) * G(n - i)
*/
int numTrees(int n)
{
vector<int> dp(n + 1, 0);
dp[0] = dp[1] = 1;
for(int i = 2; i < n + 1; i++)
{
for(int j = 1; j <= i; j++)
{
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}

Unique Binary Search Trees II

Description: Given an integer n, generate all structurally unique BST’s (binary search trees) that store values 1…n.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
/*
For example, Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
*/
//Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
/**
递归解法
*/
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
if(n == 0) return vector<TreeNode*>();
return generateBST(1, n);
}
private:
vector<TreeNode*> generateBST(int start, int end)
{
vector<TreeNode*> result;
if(start > end)
result.push_back(NULL);
vector<TreeNode*> left, right;
for(int i = start; i <= end; i++)
{
left = generateBST(start, i - 1);
right = generateBST(i + 1, end);
for(auto lnode : left)
{
for(auto rnode: right)
{
TreeNode* root = new TreeNode(i);
root->left = lnode;
root->right = rnode;
result.push_back(root);
}
}
}
return result;
}
};