Next Permutation
Description: Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers. If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order). The replacement must be in-place, do not allocate extra memory.
Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1
|
|
Permutation Sequence
Description: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order.
We get the following sequence (ie, for n = 3):
“123”
“132”
“213”
“231”
“312”
“321”
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
|
|
Plus One
Description: Given a non-negative integer represented as a non-empty array of digits, plus one to the integer. You may assume the integer do not contain any leading zero, except the number 0 itself. The digits are stored such that the most significant digit is at the head of the list.
Spiral Matrix
Description: Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.
For example, Given the following matrix:
[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
You should return [1,2,3,6,9,8,7,4,5].
Spiral Matrix II
Description: Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order.
For example, Given n = 3, You should return the following matrix:
[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]
Rotate Image
Description: You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise).
Note: You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.
Example 1:
Given input matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
rotate the input matrix in-place such that it becomes:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
Example 2:
Given input matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
rotate the input matrix in-place such that it becomes:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
|
|